Abstract

In order to endow quasi‐2D organic‐inorganic hybrid metal halide perovskites (quasi‐2D‐PVK) with superior performance, an aromatic organic ligand with aggregation‐induced emission (AIE) features is rationally designed and utilized for constructing distinctive quasi‐2D‐PVK materials. This AIE‐active ligand, TTPy‐NH2, well fits into the lattices of quasi‐2D‐PVK and leaves hydrophobic tails surrounding PVK layers, making the presented TTPy‐NH2/PVK film extraordinary in terms of both luminescence and stability. Benefiting from the prominent sensitization function and AIE tendency of TTPy‐NH2, the presented TTPy‐NH2/PVK film exhibits a high quantum yield of 62.2%, unique blue‐red dual‐emission property of both blue and red, high stability with the remnant of more than 94% fluorescence intensity remnant after 21 days. As a result, TTPy‐NH2/PVK film is capable of constituting high‐performance white light‐emitting diodes, with its color gamut reaching 138% of the National Television System Committee (NTSC) standard and the maximum efficiency is 105 lm W−1 at 20 mA. Evidently, a win‐win effect is achieved by the integration of AIE‐active ligands and quasi‐2D‐PVK, which are two of the most reputable solid‐state luminogens. This developed protocol thus opens up a new avenue for exploring the next generation of luminescent devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.