Abstract
Alkaline phosphatase (ALP) is a non-specific phosphate monoesterase and often regarded as an important biomarker of hypothyroidism and hepatobiliary diseases in medical diagnosis. In-situ detection of endogenous ALP and exploration of the distribution of ALP in cells are of great importance for the diagnosis of diseases associated with ALP. In this work, we designed and synthesized an aggregation-induced emission (AIE) fluorescent probe, (E)-2-(((9H-fluoren-9-ylidene) hydrazono)methyl)phenyl dihydrogen phosphate (FAS-P), that can respond to ALP with a remarkable large Stokes shift (>200 nm) based on excited state intramolecular proton transfer (ESIPT) mechanism. The probe FAS-P has high selectivity and sensitivity to the detection of ALP. And there is a linear relationship between the fluorescence intensity of FAS-P and ALP activity in the range of 1–100 U L−1, the limit of detection (LOD) is as low as 0.6 U L−1. More importantly, we successfully applied FAS-P to detect ALP in living cells and the monitoring of ALP in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.