Abstract

AbstractHere, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium‐based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time‐resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine‐tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio‐applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.