Abstract

We have developed aggregation-induced emission (AIE) dye loaded polymer nanoparticles with deep-red emission for siRNA delivery to pancreatic cancer cells. Two US Food and Drug Administration (FDA) approved surfactant polymers, Pluronics F127 and PEGylated phospholipid, were used to prepare the dye-loaded nanoparticle formulations and they can be used as nanovectors for gene silencing of mutant K-ras in pancreatic cancer cells. The successful transfection of siRNA by the developed nanovectors was confirmed by the fluorescent imaging and quantified through flow cytometry. Quantitative real time polymerase chain reaction (PCR) indicates that the expression of the mutant K-ras oncogene from the MiaPaCa-2 pancreatic cancer cells has been successfully suppressed. More importantly, our in vivo toxicity study has revealed that both the nanoparticle formulations are highly biocompatible in BALC/c mice. Overall, our results suggest that the AIE dye-loaded polymer nanoparticle formulations developed here are suitable for gene delivery and have high potential applications in translational medicine research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call