Abstract
Thermally activated delayed fluorescence (TADF) materials with long-lived fluorescent emission, have been considered to be promising candidates for time-resolved luminescence imaging (TRLI) and sensing (TRLS). Though the development of the TADF luminophores for TRLI has received considerable attention, the oxygen-caused delayed fluorescence quenching has greatly stagnated the progress of TADF-based TRLS. In this work, we firstly proposed the strategy of in situ generated aggregation-induced delayed fluorescence (AIDF) for TRLS. A new luminophore FAc-Py with multiply twisted geometry and AIDF behavior was designed to offer the long-lived emission for meeting the time-resolved requirement. The carboxylester-capped FAc-Py, namely FAc-Py-Ester, which is non-emissive but shows good liposolubility, was then rationally synthesized for the delayed fluorescence turn-on sensing of carboxylesterase. Carboxylesterase easily promoted the in situ release of hydrophobic FAc-Py from FAc-Py-Ester, accompanying with the activation of air-insensitive AIDF emission and finally paving a way for the functional TRLS of carboxylesterase in living cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.