Abstract

The concept of aggregation-induced emission (AIE) in purely organic luminescent molecules has drawn wide attention in the last two decades. Despite the many challenges, AIE-probes have opened versatile opportunities in many research fields. In particular, the emerging functional properties of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) have boosted the unique features of AIE luminogens (AIEgens). Thus, these luminescent materials extended the utility in sensing, imaging, optoelectronics and theranostic applications in biological field over the conventional fluorescent probe. Unlike the sensitivity of triplet state by oxygen and moisture, the long-lived phosphorescence and delayed fluorescence resulting from the enhanced intersystem crossing (ISC) and reverse intersystem crossing (RISC) from excited triplet state (T1) to excited singlet state (S1) in these luminophores gives rise to long lifetimes ranging from nanoseconds to milliseconds even up to seconds. As compared to traditional fluorescence molecules advanced AIE probes show high contrast imaging and deeper penetration depth, which have been demonstrated through near infrared I and II (NIR-I & NIR-II) fluorescence imaging, room temperature after-glow imaging and photoacoustic imaging. This chapter highlights the recent developments and principle of the efficient design of AIE probe with multi-functional properties evolved with new strategies for translational applications via fluorescence imaging, photoacoustic imaging and image-guided photodynamic/photothermal therapy (PDT/PTT) including future opportunities for AIEgens to advance the overall biomedical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.