Abstract

AbstractCarbon dots (CDs) possess outstanding luminescence properties, making them widely used in optical displays, anti‐counterfeiting systems, bioimaging, and sensors. Presently, there is much debate about the classification of CDs, as well as their formation process, structure, and fluorescence mechanisms. Aggregation plays an important role in the formation and fluorescence (e.g., aggregation‐induced emission) of CDs, yet is seldom studied in detail. This review aims fill this knowledge gap, by first exploring how aggregation leads to the formation of different types of CDs (e.g., graphene quantum dots, carbon quantum dots, and carbonized polymer dots), followed by a detailed examination of the effect of aggregation‐induced morphology on the luminescence properties and application of CDs. Finally, opportunities and challenges for the application of CDs in various applications are discussed, with the need for better mechanistic understanding of aggregation‐induced luminescence being an imperative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.