Abstract

Integrating aggregation-induced emission (AIE) into thermally activated delayed fluorescence (TADF) emitters holds great promise for the advancement of highly efficient organic light emitting diodes (OLEDs). Despite recent advancements, a thorough comprehension of the underlying mechanisms remains imperative for the practical application of such materials. In this work, we introduce a novel approach aimed at modulating the TADF process by manipulating dynamic processes in excited states through aggregation effect. Our findings reveal that aggregation not only enhances both prompt and delayed fluorescence simultaneously but also imposes constraints on molecular reorientation. This constraint reinforces spin-orbit coupling and reduces the energy gap between singlets and triplets. These insights deepen our understanding of the fundamental mechanisms governing the aggregation effect on TADF materials and provide valuable guidance for the design of high-efficiency photoluminescent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.