Abstract

Isoelectronic oxo-bridged diiron(III) aquo complexes of the homologous tripodal tetradentate amino acid ligands, N,N'-bis(2-pyridylmethyl)-3-aminoacetate (bpg(-)) and N,N'-bis(2-pyridylmethyl)-3-aminopropionate (bpp(-)), containing [(H(2)O)Fe(III)-(mu-O)-Fe(III)(H(2)O)](4+) cores, oligomerise, respectively, by dehydration and deprotonation, or by dehydration only, in reversible reactions. In the solid state, [Fe(2)(O)(bpp)(2)(H(2)O)(2)](ClO(4))(2) (1(ClO(4))(2)) exhibits stereochemistry identical to that of [Fe(2)(O)(bpg)(2)(H(2)O)(2)](ClO(4))(2) (2(ClO(4))(2)), with the ligand carboxylate donor oxygen atoms and the water molecules located cis to the oxo bridge and the tertiary amine group trans to it. Despite their structural similarity, 1(2+) and 2(2+) display markedly different aggregation behaviour in solution. In the absence of significant water, 1(2+) dehydrates and dimerises to give the tetranuclear complex, [Fe(4)(O)(2)(bpp)(4)](ClO(4))(4) (3(ClO(4))(4)), in which the carboxylate groups of the four bpp(-) ligands act as bridging groups between two [Fe(2)(O)(bpp)(2)](2+) units. Under similar conditions, 2(2+) dehydrates and deprotonates to form dinuclear and trinuclear oligomers, [Fe(2)(O)(OH)(bpg)(2)](ClO(4)) (4ClO(4)) and [Fe(3)(O)(2)(OH)(bpg)(3)](ClO(4)) (5(ClO(4))), related by addition of 'Fe(O)(bpg)' units. The trinuclear 5(ClO(4)), characterised crystallographically as two solvates 5(ClO(4)).3H(2)O and 5(ClO(4)).2MeOH, is based on a hexagonal [Fe(3)(O)(2)(OH)(bpg)(3)](+) unit, formally containing one hydroxo and two oxo bridges. The different aggregation behaviour of 1(ClO(4))(2) and 2(ClO(4))(2) results from the difference of one methylene group in the pendant carboxylate arms of the amino acid ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.