Abstract

Two tripodal amides obtained from nitrilotriacetic acid with n-butyl and n-octyl alkyl chains (HBNTA(LI) and HONTA(LII), respectively) were studied for the extraction of Th(IV) ions from nitric acid medium. The effect of the diluent medium, i.e., n-dodecane alone and a mixture of n-dodecane and 1-decanol, onto aggregate formation were investigated using small angle neutron scattering (SANS) studies. In addition, the influence of the ligand structure, nitric acid, and Th(IV) loading onto ligand aggregation and third-phase formation tendency was discussed.The LI/LII exist as monomers (aggregarte radius for LI: 6.0 Å; LII:7.4 Å) in the presence of 1-decanol, whereas LII forms dimers (aggregarte radius for LII:9.3 Å; LI does not dissolve in n-dodecane) in the absence of 1-decanol. The aggregation number increases for both the ligands after HNO3 and Th(IV) loading. The maximum organic concentration (0.050 ± 0.004 M) of Th(IV) was reached without third-phase formation for 0.1 M LI/LII dissolved in 20% isodecanol +80% n-dodecane. The interaction of 1-decanol with LII and HNO3/Th(IV) with amidic oxygens of LI/LII results in shift of carbonyl stretching frequency, as shown by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) studies. The structural and bonding information of the Th-LI/LII complex were derived from the density functional theoretical (DFT) studies. The molecular dynamics (MD) simulations suggested that the aggregation behavior of the ligand in the present system is governed by the population of hydrogen bonds by phase modifier around the ligand molecules. Although the theoretical studies suggested higher Gibbs free energy of complexation for Th4+ ions with LI than LII, the extraction was found to be higher with the latter, possibly due to the higher lipophilicity and solubility of the Th-LII aggregate in the nonpolar media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.