Abstract

This study is aimed at developing sensing schemes without obtaining selective receptors. A series of simple carbocyanine dyes was synthesized, whose emission was quenched in water with formation of nanoparticles in the range of 20-100nm. Fluorescence in near-IR region is "turned on" in the presence of a drug cation of middle molecular weight (400-700Da) and sodium dodecyl sulfate (SDS), as well as anionic drugs and a cationic surfactant (cetyltrimethylammonium bromide, CTAB). Aggregates (clusters) up to 100-200nm in size were detected using dynamic light scattering (DLS) and Rayleigh light scattering (RLS) techniques in the systems: cationic analyte-SDS, carbocyanine dye-CTAB, and in all brightly fluorescent ternary systems dye-surfactant-analyte. Small ions (<200Da) incapable of multi-point binding do not form the aggregates or cause the emission enhancement. The "turn-on" signal is only observed at the surfactant submicellar concentrations insufficient to solubilize the dye nanoparticles. Based on these findings, we suggest a rapid and simple method for the detection of ≥4·10-5mol/L of neomycin in urine. The proposed strategy paves the way for developing more selective methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.