Abstract

The cesium enolate of 6-phenyl-alpha-tetralone (CsPAT) has a lambda(max) in THF at about 387 nm, but the variation with concentration is too small for application of singular value decomposition. Proton-transfer studies with several indicators show that CsPAT forms monomer-tetramer mixtures with a tetramerization equilibrium constant, K(1,4) = 2.3 x 10(11) M(-3). The pK of the monomer is 23.39 on a scale where fluorene is assigned 22.9 (per hydrogen). For comparison, the lithium enolate, LiPAT, is also a monomer-tetramer with K(1,4) = 4.7 x 10(10) M(-3) and a monomer pK = 14.22. HMPA in large amounts promotes dissociation to monomer with both enolates. Ion-pair S(N)2 initial rates were measured for CsPAT with several alkyl halides and with methyl tosylate and compared with other rates with LiPAT. In all cases, the enolate monomers are much more reactive than the aggregates. Reaction of CsPAT with alkyl halides is generally C-alkylation but HMPA promotes increasing amounts of O-alkylation. A new indicator, 11-methyl-11H-benzo[b]fluorene, has a pK on the cesium scale of 23.39.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.