Abstract

In this work a specific family of ionic liquids, denominated fluorinated ionic liquids, with fluorine tags equal or longer than four carbon atoms, are fully characterized in order to understand their solubility and self-aggregation in aqueous solutions. The numerous combinations between cations and anions make these compounds a feasible option for the replacement of traditional and toxic surfactants used in the industrial and biomedical field. In this work, the increment of both hydrogenated and fluorinated side chain lengths, the influence of the cation headgroup (imidazolium and cholinium) as well as the difference between perfluorobutanesulfonate and perfluoropentanoate anions were studied. The liquid-liquid phase equilibria of fluorinated ionic liquids based on the perfluorobutanesulfonate anion with water were carried out. The self-aggregation behaviour of the different fluorinated ionic liquids in aqueous solutions was also determined using conductimetric titration, surface tension measurements and transmission electron microscopy. Several thermodynamic and surface parameters were obtained and used to discuss the aggregation process. These novel characterized fluorinated ionic liquids demonstrate an improved surface activity and aggregation behaviour, driven essentially by the increment of both hydrogenated and fluorinated chain lengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call