Abstract

BackgroundAggregation of the α-Synuclein (α-Syn) protein, amyloid fibril formation and progressive neurodegeneration are the neuropathological hallmarks of Parkinson's Disease (PD). However, a detailed mechanism of α-Syn aggregation/fibrillogenesis and the exact nature of toxic oligomeric species produced during amyloid formation process are still unknown.ResultsIn this study, the rates of α-Syn aggregation were compared for the recombinant wild-type (WT) α-Syn and a structurally relevant chimeric homologous protein containing an inducible Fv dimerizing domain (α-SynFv), capable to form dimers in the presence of a divalent ligand (AP20187). In the presence of AP20187, we report a rapid random coil into β-sheet conformational transformation of α-SynFv within 24 h, whereas WT α-Syn showed 24 h delay to achieve β-sheet structure after 48 h. Fluorescence ANS and ThT binding experiments demonstrate an accelerated oligomer/amyloid formation of dimerized α-SynFv, compared to the slower oligomerization and amyloidogenesis of WT α-Syn or α-SynFv without dimerizer AP20187. Both α-SynFv and α-Syn pre-fibrillar aggregates internalized cells and induced neurotoxicity when injected into the hippocampus of wild-type mice. These recombinant toxic aggregates further converted into non-toxic amyloids which were successfully amplified by protein misfolding cyclic amplification method, providing the first evidence for the in vitro propagation of synthetic α-Syn aggregates.ConclusionsTogether, we show that dimerization is important for α-Syn conformational transition and aggregation. In addition, α-Syn dimerization can accelerate the formation of neurotoxic aggregates and amyloid fibrils which can be amplified in vitro. A detailed characterization of the mechanism of α-Syn aggregation/amyloidogenesis and toxicity is crucial to comprehend Parkinson's disease pathology at the molecular level.

Highlights

  • Aggregation of the α-Synuclein (α-Syn) protein, amyloid fibril formation and progressive neurodegeneration are the neuropathological hallmarks of Parkinson's Disease (PD)

  • The diagnostic feature common to protein misfolding disorders involves the deposition of insoluble protein aggregates and amyloid fibrils caused by accumulation of homologous proteins which are abnormally folded into β-sheet structures [10,11]

  • An FK506 binding domain (Fv) dimerizing domain was fused to the C-terminal of α-Syn, thereby creating α-SynFv with the capacity to homodimerize in the presence of AP20187

Read more

Summary

Introduction

Aggregation of the α-Synuclein (α-Syn) protein, amyloid fibril formation and progressive neurodegeneration are the neuropathological hallmarks of Parkinson's Disease (PD). Expression of α-Syn soluble oligomers with reduced fibrillization propensity induced neurotoxicity in worms, flies and mammalian neurons [16] These pre-fibrillar aggregate species are readily formed in vitro from α-Syn mutants such as A30P and A53T, which are associated with neurotoxicity and early-onset PD [17,18]. Interaction of α-Syn fibrils either with recombinant or cell-expressed αSyn converts soluble homologous proteins into a misfolded state through a nucleation-dependent polymerization process [22,23] These results suggest that the mechanism underlying propagation of α-Syn fibrils is reminiscent of those by which tau aggregates and prions spread and transmit the pathology through the brain tissue in Alzheimer’s and prion diseases, respectively [24]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.