Abstract

Gelation of strongly basic silico−alkaline solutions was promoted by appropriate additions of calcium ions. The structure of the aggregates formed in the precursor sols and the resulting gels were studied, within a wide length scale, using small-angle X-ray, small-angle neutron, and elastic light scattering. The study of the kinetics of aggregation was performed in situ. The experimental results demonstrate that gels are composed of aggregates exhibiting a fractal structure, large particles formed in the solutions just after calcium addition and, in some cases, small primary particles remaining in the solution phase. The structural features of the gels are strongly dependent on the concentration of calcium ions. Reaction limited aggregation and diffusion-limited aggregation of primary silicate species are the predominant mechanisms of aggregation and gel formation in solutions with low and high calcium concentration, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.