Abstract

A variety of energy resources has been identified as being flexible in their electric energy consumption or generation. This energetic flexibility can be used for various purposes such as minimizing energy procurement costs or providing ancillary services to power grids. To fully leverage the flexibility available from distributed small-scale resources, their flexibility must be quantified and aggregated. This paper introduces a generic and scalable approach for flexible energy systems to quantitatively describe and price their flexibility based on zonotopic sets. The description allows aggregators to efficiently aggregate the flexibility of large numbers of systems and to make control and market decisions on the aggregate level. In addition, an algorithm is presented that distributes aggregate-level control decisions among the individual systems of the population in an economically fair and computationally efficient way. The algorithm is applied to the problem of disaggregating reference schedules resulting from day-ahead energy markets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.