Abstract

Density functional theory and Car-Parrinello molecular dynamics simulations have been carried out for model aldol reactions involving aggregates of lithium enolates derived from acetaldehyde and acetone. Formaldehyde and acetone have been used as electrophiles. It is found that the geometries of the enolate aggregates are in general determined by the most favorable arrangements of the point charges within the respective Lin On clusters. The reactivity of the enolates follows the sequence monomer≫dimer>tetramer. In lithium aggregates, the initially formed aldol adducts must rearrange to form more stable structures in which the enolate and alkoxide oxygen atoms are within the respective Lin On clusters. Positive cooperative effects, similar to allosteric effects found in several proteins, are found for the successive aldol reactions in aggregates. The corresponding transition structures show in general sofa geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.