Abstract

Supramolecular polyisobutylenes (PIB) bearing mono- and bifunctional chain ends with hydrogen-bonding units were prepared, and their association behavior in the melt state was investigated by dynamic rheology and compared to aggregation in solution, aiming at determining association dynamics in the solid state. A preparation combining living cationic polymerization with either azide/alkyne “click” reactions or nucleophilic substitution reactions enabled a full end group transformation to the final PIB polymers, modified with either thymine or 2,6-diaminotriazine end groups as proven by NMR and MALDI methods with molecular weights of ∼3500 and ∼10 000 g/mol. Stoichiometric mixtures of these polymers bearing specifically interacting thymine/triazine moieties were prepared by solution blending and the temperature-dependent dynamics investigated by rheological measurements. At temperatures of 20−60 °C all samples display strongly thermoreversible aggregation with sheet-type or partially cross-linked structures, which deaggregate at temperatures of ∼80 °C. More complex aggregates with bridged micellar structure were formed from the respective bifunctional PIB’s bearing thymine and 2,6-diaminotriazine moieties. Thus, in addition to specific linear aggregates, the formation of clusters and aggregates of different architecture has to be taken into account to understand and control structure and mechanical properties of supramolecular chains in the melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.