Abstract

The source of collective magnetism in II–VI semiconductor quantum dots (QDs) doped with Mn2+ ions at high nominal impurity levels is still under debate. In the particular case of mesoporous, self-assembled cubic ZnS:Mn QDs, quantitative electron paramagnetic resonance (EPR) studies have shown that the Mn2+ ions incorporated in the core and on the surface of the QDs cannot be responsible for the observed collective magnetism because they remain in a diluted paramagnetic state up to the 50 000 ppm nominal concentration. Here we investigate the composition, localization, structure, and magnetic properties of the aggregates of Mn2+ ions incorporated in the mesoporous cZnS:Mn as a possible source of the observed collective magnetism. Samples of mesoporous cubic ZnS:Mn prepared by coprecipitation at several nominal impurity levels from 200 to 50 000 ppm are investigated by EPR, magnetometry, and analytical high resolution (scanning) transmission electron microscopy. The low temperature magnetic properties of th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.