Abstract
Methionine biosynthesis has taken different evolutionary pathways in bacteria, fungi and plants. To gain insight into these differences and to search for new ways of manipulating methionine biosynthesis in plants, the yeast (Saccharomyces cerevisiae) Met2 gene and the bacteria (Leptospira meyeri) MetX gene, both encoding homoserine O-acetyltransferase, were expressed in tobacco plants. We found protein aggregates in extracts of these transgenic plants, whose levels were much higher in plants grown at 35 °C than at 25 °C. It appears that the yeast and the bacterial proteins are heat labile and tend to change their intracellular conformation. These conformational changes of the transgenic proteins were more prominent at high temperature and most probably triggered aggregation of the yeast and the bacterial proteins. Moreover, plants expressing the yeast gene that grew at 35 °C over-accumulated stress-associated metabolites, such as phenolic compounds, including tannins, as well as the amino acid arginine. In addition, the transgenic plants expressing high levels of the foreign genes show growth retardation, which further suggests that, these plants suffer from internal stress. The changes in protein conformation and the consequent triggering of stress response may account for the ability of these transgenic plants to tolerate more extreme heat stress (60 °C) than the wild-type plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.