Abstract

The demand for extensive data rates in dense-traffic wireless networks has expanded and needs proper controlling schemes. The fifth generation of mobile communications (5G) will accommodate these massive communications, such as massive Machine Type Communications (mMTC), which is considered to be one of its top services. To achieve optimal throughput, which is considered a mandatory quality of service (QoS) metric, the carrier sense multiple access (CSMA) transmission attempt rate needs optimization. As the gradient descent algorithms consume a long time to converge, an approximation technique that distributes a dense global network into local neighborhoods that are less complex than the global ones is presented in this paper. Newton’s method of optimization was used to achieve fast convergence rates, thus, obtaining optimal throughput. The convergence rate depended only on the size of the local networks instead of global dense ones. Additionally, polynomial interpolation was used to estimate the average throughput of the network as a function of the number of nodes and target service rates. Three-dimensional planes of the average throughput were presented to give a profound description to network’s performance. The fast convergence time of the proposed model and its lower complexity are more practical than the previous gradient descent algorithm.

Highlights

  • The evolution of the fifth generation of cellular mobile systems (5G) has become one of the most significant fields for commercial applications

  • A carrier sense multiple access (CSMA) algorithm of a single-hop wireless network was considered under a realistic signal to interference and noise ratio (SINR) model

  • An approximation algorithm of distributing the global network into downscaled local neighborhoods was used to calculate the transmission attempt rate to optimize the throughput of the global network

Read more

Summary

Introduction

The evolution of the fifth generation of cellular mobile systems (5G) has become one of the most significant fields for commercial applications. The 5G system is promising to increase data rates by 10 times that of the traditional Long-Term Evolution (LTE) networks, to an average of 10 Gbps with a 1 ms round-trip latency. This high bandwidth is to accommodate an enormous number of connected devices per unit area under the Internet of Things (IoT) framework [1]. The services in mMTC are defined by large numbers of linked devices that are generally transmit data traffic. It includes algorithms, mechanisms, and techniques that permit the exchange of information or data without explicit human involvement

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.