Abstract

Alkoxy-bridged rhenium(I) rectangles [{(CO)(3)Re(mu-OR)(2)Re(CO)(3)}(2)(mu-bpy)(2)] (1, R = C(4)H(9); 2, R = C(8)H(17); 3, R = C(12)H(25); bpy = 4,4'-bipyridine) comprising long alkyl chains form optically transparent aggregates and exhibit luminescence enhancement in the presence of water. The aggregation of Re(I)-rectangle was followed using a light-scattering technique. Presumably, the enhanced luminescence efficiency resulted from restriction of torsional molecular motion in the aggregates. In addition, the rate of bimolecular quenching of Re(I)-aggregates in the triplet excited state by various electron donors (amines) and acceptors (quinones) was efficient. These results indicate that the excited state of aggregated Re(I) surfactants with an electron acceptor and donor facilitate the electron-transfer quenching process after they became preassociated inside the Re(I)-aggregated species. These synthesized compounds may be useful fluorescent materials in optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.