Abstract

Microstructures assembled by amphiphilic graft copolymers in a selective solvent (poor for the backbone chain and good for graft chains or poor for graft chains and good for the backbone chain) were investigated on the basis of a real-space algorithm of self-consistent field theory in two-dimensions. Circle-like micelles, line-like micelles, large compound micelles, and vesicles are obtained by tailoring the architectural parameters and interaction parameter between the graft blocks and solvents. The aggregate morphology stability regions of graft copolymers as functions of the position of first graft point and the number of branches are constructed. It is found that the architectural parameters play a remarkable role in the complex microstructure formation. The interaction between the graft blocks and solvents is also shown to exert an effect on the morphology stability regions. The distributions of the free end and inner blocks of the backbone are found to be different in various aggregate structures. For the circle-like micelles assembled by graft copolymers with a hydrophobic backbone and vesicles assembled by graft copolymers with a hydrophilic backbone, the free end and inner blocks segregate and localize in different parts of the aggregates depending on their length. However, with respect to the large compound micelles and vesicles assembled by graft copolymers with a hydrophobic backbone, the free end and inner blocks uniformly mix in the clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.