Abstract
Travel planning and location recommendation are increasingly important in recent years. In this light, we propose and study a novel aggregate location recommendation query (ALRQ) of discovering aggregate locations for multiple travelers and planning the corresponding travel routes in dynamic transportation networks. Assuming the scenario that multiple travelers target the same destination, given a set of travelers’ locations Q, a set of potential aggregate location O, and a departure time t, the ALRQ finds an aggregate location o ∈ O that has the minimum global travel time ${\sum }_{q \in Q} T(q,o,t)$ , where T(q,o,t) is the travel time between o and q with departure time t. The ALRQ problem is challenging due to three reasons: (1) how to model the dynamic transportation networks practically, and (2) how to compute ALRQ efficiently. We take two types of dynamic transportation networks into account, and we define a pair of upper and lower bounds to prune the search space effectively. Moreover, a heuristic scheduling strategy is adopted to schedule multiple query sources. Finally, we conducted extensive experiments on real and synthetic spatial data to verify the performance of the developed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.