Abstract

Collecting statistic from graph-based data is an increasingly studied topic in the data mining community. We argue that these statistics have great value as well in dynamic IoT contexts: they can support complex computational activities involving distributed coordination and provision of situation recognition. We show that the HyperANF algorithm for calculating the neighbourhood function of vertices of a graph naturally allows for a fully distributed and asynchronous implementation, thanks to a mapping to the field calculus, a distribution model proposed for collective adaptive systems. This mapping gives evidence that the field calculus framework is well-suited to accommodate massively parallel computations over graphs. Furthermore, it provides a new "self-stabilising" building block which can be used in aggregate computing in several contexts, there including improved leader election or network vulnerabilities detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.