Abstract
Several causal missense mutations in protein kinase C gamma (gamma PKC) gene have been found in spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that mutant gamma PKC found in SCA14 is susceptible to two types of aggregation, cytoplasmic dot-like and perinuclear massive aggregation, and causes cell death in Chinese hamster ovary cells. Long-term time-lapse imaging revealed that firstly accumulated dot-like aggregation of mutant gamma PKC-green fluorescent protein (GFP) gradually formed perinuclear massive aggregations, followed by cell death. However, it remains unclear how aggregate formation of mutant gamma PKC causes cell death. In the present study, we examined whether these mutant aggregations affect the ubiquitin-proteasome system (UPS) and endoplasmic reticular (ER) stress. Two mutant gamma PKC-GFPs (S119P and G128D) were strongly ubiquitinated, and dot-like aggregations of these mutants were ubiquitin-positive and colocalized with proteasome 20S. Furthermore, proteasome activity in cells with aggregates, especially massive ones, was significantly decreased. Aggregate formation of mutant gamma PKC-GFP induced phosphorylation of PERK (PKR-like ER kinase) and nuclear expression of CHOP (C/EBP homologous protein), hallmarks of ER stress and subsequently activated caspase-3. These results indicate that aggregate formation of mutant gamma PKC found in SCA14 impairs UPS and induces ER stress, leading to apoptotic cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.