Abstract

Aggregate engineering of non-covalent networks enables thermo-mechanical versatility of supramolecular polymers, particularly the stimuli-responsive phase transitions and intrinsically damage-healing abilities. However, most non-covalent networks are vulnerable at elevated temperatures, which significantly suppress the robustness of supramolecular polymers. Herein, ureidocytosine (UCy) motifs that can form extensive non-covalent networks and thus robust molecular aggregates via multivalent hydrogen bonds and aromatic stackings, are proposed to enable precise programming of the thermo-mechanical versatility. Molecular simulations reveal that the enthalpic contributions from the UCy aggregates play dominant roles to compensate the entropic loss from the redistributions of polymeric spacers and stabilize the non-covalent networks over wide temperature windows. Such aggregate-level strategy offers prospects for applications which require thermo-mechanical versatility of supramolecular polymers, such as 3D printing, microfabrication and damage-healing coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.