Abstract

We explicitly calculate the aggregate diffusion dynamics in one-dimensional agent-based models of adoption of new products, without using the mean-field approximation. We then introduce a clusters-dynamics approach, and use it to derive an analytic approximation of the aggregate diffusion dynamics in multidimensional agent-based models. The clusters-dynamics approximation shows that the aggregate diffusion dynamics does not depend on the average distance between individuals, but rather on the expansion rate of clusters of adopters. Therefore, the grid dimension has a large effect on the aggregate adoption dynamics, but a small-world structure and heterogeneity among individuals have only a minor effect. Our results suggest that the one-dimensional model and the Bass model provide a lower bound and an upper bound, respectively, for the aggregate diffusion dynamics in agent-based models with “any” spatial structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.