Abstract

Sorghum and maize waxy starches were hydrophobically modified with octenylsuccinic anhydride (OSA) and treated with enzymes before being used to emulsify β-carotene (beta,beta-carotene) and oil in water. Enzyme treatment with β-amylase resulted in emulsions that were broken (separated) earlier and suffered increased degradation of β-carotene, whereas treatment with pullulanase had little effect on emulsions. Combinations of surfactants with high and low hydrodynamic volume (Vh) indicated that there is a relationship between Vh and emulsion stability. Degree of branching (DB) had little direct influence on emulsions, though surfactants with the highest DB were poor emulsifiers due to their reduced molecular size. Results indicate that Vh and branch length (including linear components) are the primary influences on octenylsuccinylated starches forming stable emulsions, due to the increased steric hindrance from short amphiphilic branches, consistent with current understanding of electrosteric stabilization. The success of OSA-modified sorghum starch points to possible new products of interest in arid climates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call