Abstract

Selected types of neurons in the central nervous system are associated with a specialized form of extracellular matrix. These so-called perineuronal nets (PNs) are supramolecular structures surrounding neuronal somata, proximal dendrites and axon initial segments. PNs are involved in the regulation of plasticity and synaptic physiology. In addition, PNs were proposed to carry neuroprotective functions as PN-ensheathed neurons are mostly spared of tau pathology in brains of Alzheimer patients. Recently, the neuroprotective action of PNs was confirmed experimentally, demonstrating (i) that mainly aggrecan mediates the neuroprotective function of PNs and (ii) that aggrecan seems to generate an external shielding preventing the internalization of pathological forms of tau. In the present study, we aimed at extending these findings and hypothesized that aggrecan further provides an intracellular protection by preventing mutation-triggered formation of pathological forms of tau. We used crossbreds of TauP301L mice and heterozygous aggrecan mice which are characterized by spontaneous deletion of the aggrecan allele. We analysed the extent of tau pathology in dependence of aggrecan protein amount by applying immunohistochemistry, Western blotting and ELISA. The results clearly indicate that aggrecan has no significant impact on tau aggregation in the brainstem of our mouse model. Still, reduced aggrecan levels were accompanied by increased levels of tau protein and reduced number of Tau-1-positive neurons, which indicate an increase in phosphorylation of tau. In conclusion, these data demonstrate a correlation between aggrecan and P301L mutation-triggered tau expression and phosphorylation in our bigenic mouse model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.