Abstract
Recently, co-clustering algorithms are widely used in heterogeneous information networks mining, and the distance metric is still a challenging problem. Bregman divergence is used to measure the distance in traditional co-clustering algorithms, but the hierarchical structure and the feature of the entity itself are not considered. In this paper, an agglomerative hierarchical co-clustering algorithm based on Bregman divergence is proposed to learn hierarchical structure of multiple entities simultaneously. In the aggregation process, the cost of merging two co-clusters is measured by a monotonic Bregman function, integrating heterogeneous relations and features of entities. The robustness of algorithms based on different divergences is tested on synthetic data sets. Experiments on the DBLP data sets show that our algorithm improves the accuracy over existing co-clustering algorithms.KeywordsCo-clusteringBregman divergenceAgglomerative hierarchical algorithmHeterogeneous Information networks
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.