Abstract
Resistance to antibiotics is increasing to alarmingly high levels. As antibiotics are less effective, more infections are becoming more complex and often impossible to treat. Numerous antibiotics discovered in marine organisms show that the marine environment, which accounts for over half of the world's biodiversity, is a massive source for novel antibiotics and that this resource must be explored to identify next-generation antibiotics. This research aimed to predict antibacterial activity in marine compounds using a computational approach to reduce the cost and time of finding marine organisms, extracting, and testing numerous unknown marine compounds' bioactivities. We used a simple unsupervised learning approach to predict the biological activity of marine compounds using agglomerative hierarchical clustering. We mixed antibiotic drug data in DrugBank Database and chemical compound data from marine organisms in literature to compile our dataset. We applied five linkage methods in our dataset and compared the best method by assessing internal validation measurement. We found that the Ward with squared dissimilarity matrix is the best method in the dataset, and ten compounds from 73 compounds of the marine compound are determined as potential marine compounds which have antibacterial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.