Abstract
AbstractMixed matrix membranes (MMMs) are effective materials for emerging separation applications. While MMMs show promise, various membrane formation schemes have produced particle agglomerations, surface ruptures, and varying separation performance as a result. In this work, a replicated 2 × 23 full factorial design of experiment (DOE) and a mixture analysis was conducted to investigate the effects of activated carbon, polyethylene glycol (PEG), and solvent type, used during MMM formation. Aniline blue filtration was used as a model for performance. A thorough analysis was conducted on contact angle, agglomeration frequency, water flux, and dye rejection. Specifically, a novel and facile method to study agglomeration tendencies is presented. Among other trends, agglomeration tendencies were mitigated by the addition of PEG during the fabrication process. Water flux increased from 10 to 55 LMH when PEG was used as a pore former and dye rejection increased from 72% to 90% with the addition of AC particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.