Abstract

BackgroundThe terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo.ResultsWe tested two TiO2 NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO2 induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1β increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO2.In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO2 suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO2 induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates.ConclusionAgglomeration of TiO2 NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.

Highlights

  • The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and attract attention in view of their potential influence on health effects

  • 117 nm TiO2 were found to be less agglomerated when dispersed at pH 7.5 (117 nm-SA) and existed as large agglomerates when dispersed at pH 2 solution (117 nm-LA)

  • The dispersion protocol and descriptive Transmission Electron Microsopy (TEM) characterization used in this study allowed to investigate the influence of agglomeration state of TiO2 NPs on their toxicity/biological responses

Read more

Summary

Introduction

The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and attract attention in view of their potential influence on health effects. Manufactured nanomaterials (NMs) exist as unbound (single) particles, agglomerates, aggregates or as a mixture thereof [1,2,3,4] This is clearly recognised in the definition of NMs recommended by the European Union (EU) stating “manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm” [5]. This definition was proposed for legislative and regulatory purposes with no direct regard to hazard. This knowledge gap is affecting the risk assessment process and hindering the development of guidelines to regulate NMs in commercial products

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.