Abstract

Inclusion agglomeration is an important element in several industrial problems during steelmaking, such as nozzle clogging. In parallel work by the authors, a revised Kralchevsky-Paunov model has been established and the performance of this model has been validated against the experimental data from in-situ observations using confocal laser scanning microscopy. In this work, the revised model has been applied to quantitatively evaluate the attractive capillary force for the agglomeration of various inclusions at the interface between Ar and liquid iron/steel. A parametric study of the effects on the capillary force of the inclusion density, contact angle between the inclusion and liquid steel, and the surface tension of the liquid metal are quantitatively investigated. The results show that inclusion density and contact angle have a more marked effect on the capillary force than surface tension of liquid metal. Moreover, the inclusion agglomeration behavior in the liquid iron/steel matrix is discussed. The coagulation coefficient of various inclusions is calculated. Both the calculation results of the attractive capillary force of inclusions at the interface between Ar and liquid iron/steel and coagulation coefficient of inclusions in the liquid iron/steel matrix can offer a close agreement; moreover, the order of magnitude of inclusion agglomeration tendency is suggested. By using the coagulation coefficient, the inclusion collision volume and collision rate are calculated and the effects of inclusion composition, size, and number density are investigated. The evaluation results show that the tendency for affecting inclusion collision is inclusion number density > inclusion size > inclusion composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call