Abstract

Designing efficient non-precious metal-based catalysts for urea oxidation reaction (UOR) is essential for achieving energy-saving hydrogen production and the treatment of wastewater containing ammonia. In this study, sodium dodecyl sulfate (SDS) is employed as a sacrificial template to synthesize NiCo alloy nanowires (NiCo(SDS)/CC), and the instinct formation mechanism is investigated. It is found that SDS can inhibit the Ostwald ripening during hydrothermal and calcination processes, which could release abundant active cobalt, thereby modulating the electronic structure to promote the catalytic reaction. Moreover, SDS as a sacrificial template can induce the deposition of metal atoms and increase the specific surface area of the catalyst, providing abundant active sites to accelerate the reaction kinetics. As expected, the NiCo(SDS)/CC exhibits good activity for both UOR and hydrogen evolution reactions (HER) and it requires only 1.31 V and −86 mV to obtain a current density of ±10 mA cm−2, respectively. This work provides a new strategy for reducing the agglomeration of transition metals to design high-performance composite catalysts for urea oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call