Abstract

Fault will affect product quality, damage the reaction device, and cause property damage, so fault detection is a crucial part of the industrial production process. The traditional multivariate statistics method is gradually limited because the industrial data for inspection is mostly time series with the characteristics of difficult modeling and large noise interference. Multi-Scale Convolutional Neural Network (MCNN) has achieved remarkable results in time series processing and the computational efficiency. This paper applies MCNN to the fault detection and classification of the industry process. MCNN incorporates the feature extraction and the classification in a single framework. It will lead to further feature representations and superior fault detection performance at the industrial process. MCNN is conducted in the TensorFlow framework, and its fault detection performance is evaluated with existing BP neural network on a large amount of time series industrial data from a real gas-phase ethylene polymerization industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.