Abstract

The study investigated the role of agglomeration and the effect of fine lactose size on the dispersion of salmeterol xinafoate (SX) from SX-lactose mixtures for inhalation. Particle size distributions were characterised by Malvern Mastersizer S, Aerosizer and Spraytec, and imaging conducted by scanning electron microscopy (SEM). Inter-particulate adhesion was quantified by atomic force microscopy. Deposition of SX was measured using a twin stage impinger. SX was analysed using validated high-performance liquid chromatography method (r(2)=1.0, CV=0.4-1.0%). Addition of fine lactose with a volume median diameter (VMD) of 7.9 microm to a SX-lactose carrier and carrier-free mixture resulted in significantly better dispersion (16.8% for 20% added fine lactose) than fractions with VMD of 3.0, 17.7 and 33.3 microm (less than 9.1% for 20% fine lactose). Using the carrier-free mixtures, particle sizing of the aerosol cloud using the Spraytec, coupled with the application of the Aerosizer using differing dispersion energies and SEMs of the samples, indicated that an open packed, agglomerate structure improved SX dispersion. The highest extent of SX dispersion occurred when SX and fine lactose were detached from the surface, usually in the form of loose agglomerates. The outcomes of this research demonstrated how agglomerate structure influenced dispersion and the key role of fine lactose particle size in SX dispersion from mixtures for inhalation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call