Abstract

AbstractAgglomerate size is one of the key factors influencing the fluidization behavior of nanoparticles. The effect of fluidization time, superficial gas velocity, and vibration frequency on agglomerate sizes for different binary mixtures of nanoparticles at the top of the bed was investigated in a vibrated fluidized bed (VFB). The agglomerate sizes decreased and fluidization quality was significantly enhanced owing to introduction of vibration energy. The Richardson‐Zaki equation combined with Stokes' law permitted the prediction of mean agglomerate sizes. Experimental and estimated results indicated that vibration led to a smaller agglomerate size. The mean predicted agglomerate sizes were in agreement with those determined experimentally in the VFB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.