Abstract

BackgroundFragile X Syndrome (FXS), the most common inherited form of mental retardation, is caused by expansion of a CGG/CCG repeat tract in the 5′-untranslated region of the fragile X mental retardation (FMR1) gene, which changes the functional organization of the gene from euchromatin to heterochromatin. Interestingly, healthy-length repeat tracts possess AGG/CCT interruptions every 9–10 repeats, and clinical data shows that loss of these interruptions is linked to expansion of the repeat tract to disease-length. Thus, it is important to understand how these interruptions alter the behavior of the repeat tract in the packaged gene.ResultsTo investigate how uninterrupted and interrupted CGG/CCG repeat tracts interact with the histone core, we designed experiments using the nucleosome core particle, the most basic unit of chromatin packaging. Using DNA containing 19 CGG/CCG repeats, flanked by either a nucleosome positioning sequence or the FMR1 gene sequence, we determined that the addition of a single AGG/CCT interruption modulates both the ability of the CGG/CCG repeat DNA to incorporate into a nucleosome and the rotational and translational position of the repeat DNA around the histone core when flanked by the nucleosome positioning sequence. The presence of these interruptions also alters the periodicity of the DNA in the nucleosome; interrupted repeat tracts have a greater periodicity than uninterrupted repeats.ConclusionsThis work defines the ability of AGG/CCT interruptions to modulate the behavior of the repeat tract in the packaged gene and contributes to our understanding of the role that AGG/CCT interruptions play in suppressing expansion and maintaining the correct functional organization of the FMR1 gene, highlighting a protective role played by the interruptions in genomic packaging.

Highlights

  • Fragile X Syndrome (FXS), the most common inherited form of mental retardation, is caused by expansion of a CGG/CCG repeat tract in the 5′-untranslated region of the fragile X mental retardation (FMR1) gene, which changes the functional organization of the gene from euchromatin to heterochromatin

  • Using DNA containing 19 CGG/CCG repeats, flanked by either the nucleosome positioning sequence S1 or the fragile X mental retardation 1 (FMR1) gene sequence, we assessed the ability of AGG/CCT interruptions to modulate both the ability of the CGG/CCG repeat DNA to incorporate into a nucleosome and the position of the repeat DNA around the histone core, and define the influence of AGG/CCT interruptions on the functional organization of the FMR1 gene

  • Before we can investigate the ability of AGG/CCT interruptions to modify the behavior of CGG/CCG repeats in a nucleosome, we must first understand the behavior of uninterrupted repeats

Read more

Summary

Introduction

Fragile X Syndrome (FXS), the most common inherited form of mental retardation, is caused by expansion of a CGG/CCG repeat tract in the 5′-untranslated region of the fragile X mental retardation (FMR1) gene, which changes the functional organization of the gene from euchromatin to heterochromatin. It is known that expansion of the CGG/CCG repeats leads to hyper-methylation of the repeat tract and the FMR1 promoter, which, along with the loss of histone acetylation, causes the functional organization of FMR1 to switch from transcriptionally active euchromatin to the tightly compacted heterochromatin, resulting in a loss of the FMR1 protein product [3,14,15,16]. Sequencing analysis of healthy FMR1 alleles has shown that AGG/CCT interruptions are present every 9–10 repeats with (CGG)9-10AGG(CGG)9AGG(CGG)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.