Abstract

We examined the mechanism of coronary artery spasm related to oxidant stress with aging in senescence marker protein-30 (SMP30)-deficient mice because SMP30 decreases with aging and SMP30 knockout (KO) mice show a short life with increased oxidant stress. To examine the effect of SMP30 on coronary artery vasomotor tone, we measured the endothelium-dependent [5-hydroxytryptamine (5-HT)] response of isolated, pressurized coronary arteries from SMP30 KO and wild-type (WT) mice (n=10 each). In SMP30 KO mice, 5-HT-induced vasoconstriction occurred, which altered vasodilation with dithiothreitol, a thiol-reducing agent. In WT mice, 5-HT-induced vasodilation occurred. Administration of 5-HT from the aortic sinus induced a coronary artery spasm in SMP30 KO mice, which was prevented by the intravenous administration of Y-27632, rho-kinase inhibitor. The fluorescence level of monochlorobimane in coronary arteries, which covalently labels the reduced total thiols, decreased in SMP30 KO mice, but reverted to a level comparable with that of WT mice on treatment with Y-27632. From these results, SMP30 provides protection against coronary artery spasm. Chronic oxidant stress associated with aging plays an important role in coronary artery spasm related to thiol oxidation and rho-kinase signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call