Abstract

Lead is one of the most common neurotoxic metals present in our environment. Chronic developmental lead exposure is known to be associated with cognitive dysfunction in children. Functional and morphological impairment of the rat brain has also been reported in the hippocampus (Hi) following developmental lead exposure. The present study was carried out to further investigate age-related morphological impairments in the rat Hi following developmental lead exposure with three methods: (1) magnetic resonance imaging (MRI); (2) light microscopy (LM); and (3) electron microscopy (EM) techniques. Neonatal Wistar rats were exposed to lead from parturition to weaning via milk of dams drinking a 0.2% lead acetate solution. Age-related morphological alternations were investigated in the Hi of lead-exposed rats at various postnatal ages: postnatal day (PND) 17, 30 and 90. The MRI signal intensities (SIs) in the left, right, superior and inferior hippocampal regions of control and lead-exposed rats were analyzed. Compared with controls, the SIs of the four hippocampal regions of interest were significantly increased in lead-exposed rats at PND 17, 30 and 90. Moreover, the lead-induced impairment of the Hi showed an age-related decline and a specific topographical pattern. The impairment of inferior hippocampal regions was more severe than that of superior regions in lead-exposed rats at PND 17 and 30, while no significant difference of SIs was observed between left and right hippocampal regions in the three age groups, and between superior and inferior regions in the PND 90 lead-exposed rats. The LM observations indicated that the morphological injury of hippocampal neurons in lead-exposed rats was also age-related. The EM observations revealed that the endoplasmic reticular, Golgi complex and mitochondria of hippocampal CA1 and dentate gyrus neurons in lead-exposed rats were damaged. These results demonstrate that lead-induced morphological impairments of the rat Hi follow a specific age- and site-related pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.