Abstract

Previous research has indicated that older adults have significantly lower accuracy in terms of force control than young adults. In addition, accuracy of force control is known to decrease in the absence of visual feedback. However, whether the effect of visual feedback on fine motor control is similar for young adults and older adults is not clear. The purpose of this study, therefore, was to examine the effect of visual feedback on bimanual pinch force control in older adults. Thirty-one undergraduate students (age 19.7 ± 0.9 years) and 31 older adults (age 65.1 ± 8.1 years) participated in this study. After measuring finger-pinch maximal voluntary force (MVF), the participants were asked to maintain 10% MVF as steadily as possible in two different conditions: with visual feedback (visual feedback condition; VF condition) and without visual feedback (no visual feedback condition; NVF condition). We found that older adults had significantly greater targeting error and force variability than young adults in the VF condition, but not in the NVF condition. In addition, older participants exhibited a significantly greater sum of power for the 0-4 and 4-8 Hz frequency bin than young adults (p < 0.05) in the VF condition, although there was no significant difference in the NVF condition. These results suggest that older adults do not use visual information as effectively as younger adults to reduce force control error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call