Abstract

The organization and composition of the collagen matrix of cortical bone changes as the bone matures due to growth and mechanical loading. We aimed to investigate the composition and organization of the collagen matrix in rabbit cortical bone during maturation using Fourier transform infrared (FTIR) microspectroscopy and polarized light microscopy (PLM). FTIR and PLM findings were compared to biochemical analysis from an earlier study. Mid-diaphyseal samples from left femora of female New Zealand White rabbits were used. The animal age ranged from newborn to 18-month old (5 age groups, n = 10 per group). The bones had earlier been decalcified and evaluated with biochemistry. In this study, collagen content, orientation, collagen cross-linking and spatial heterogeneity of all parameters was evaluated. Similar results were obtained when collagen content was evaluated with FTIR and PLM compared to the collagen content assessed with BA. Collagen content, orientation and collagen maturity increased significantly until the age of 3 months and remained similar thereafter. Simultaneously, spatial heterogeneity of the measured parameters decreased. Based on these findings, it seems that the collagen matrix of rabbit bone attains its mature state around 3 months of age, which is before the overall skeletal maturity is reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.