Abstract

Abstract Hearing loss generally occurs in the auditory periphery but leads to changes in the central auditory system. Noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL) affect neurons in the ventral cochlear nucleus (VCN) at both the cellular and systems levels. In response to a decrease in auditory nerve activity associated with hearing loss, the large synaptic endings of the auditory nerve, the endbulbs of Held, undergo simplification of their structure and the volume of the postsynaptic bushy neurons decreases. A major functional change shared by NIHL and ARHL is the development of asynchronous transmitter release at endbulb synapses during periods of high afferent firing. Compensatory adjustements in transmitter release, including changes in release probability and quantal content, have also been reported. The excitability of the bushy cells undergoes subtle changes in the long-term, although short-term, reversible changes in excitability may also occur. These changes are not consistently observed across all models of hearing loss, suggesting that the time course of hearing loss, and potential developmental effects, may influence endbulb transmission in multiple ways. NIHL can alter the representation of the loudness of tonal stimuli by VCN neurons and is accompanied by changes in spontaneous activity in VCN neurons. However, little is known about the representation of more complex stimuli. The relationship between mechanistic changes in VCN neurons with noise-induced or age-related hearing loss, the accompanying change in sensory coding, and the reversibility of changes with the reintroduction of auditory nerve activity are areas that deserve further thoughtful exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.