Abstract

Over regions with sparse observation networks, including South Africa’s Northern Cape Province, gridded data sets represent valuable supplementary data sources enabling spatially detailed climate investigations. Their performance is, however, influenced by regional characteristics, thus a performance assessment should be a prerequisite for any regional application. Through a pairwise comparison with eight point-based temperature records, we evaluated the AgERA5 data sets representation of mean summer (November–March; Tms) and winter (May–September; Tmw) temperatures and respective seasonal heatwave and coldwave characteristics across the Northern Cape for 1980–2020. Correlations ranging from 0.48 to 0.92 for Tms and from 0.38 to 0.94 for Tmw reflect relatively strong, but varying, temporal correspondence between the AgERA5 data and stations. Low biases, averaging −0.08 (0.17) °C and ranging from -0.79 to 2.10 (-0.40 to 1.47) °C for Tms (Tmw) were evident. Biases for the heatwave (coldwave) magnitudes were low, averaging -0.38 (0.19) °C2, and ranging from -1.55 to 1.47 (-2.05 to 2.91) °C2. Biases for the heatwave (coldwave) frequency were also low, but typically overestimated, averaging 1.19 (0.73) days, and ranging from -1.33 to 5.60 (-1.61 to 3.39) days. Biases for the heatwave (coldwave) number were low and typically overestimated, averaging 0.27 (0.08) events, and ranging from -0.28 to 1.40 (-0.39 to 0.39) events. Despite some stations depicting consistently poor performance, the study results support further application of the AgERA5 product for spatiotemporal analyses of mean and extreme temperatures across the Northern Cape, provided limitations are adequately acknowledged. Further application of the fine-resolution AgERA5 product will greatly inform impact-based studies exploring mean and extreme temperature influences over the Northern Cape Province.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call