Abstract

Forest degradation in the tropics is a widespread, yet poorly understood phenomenon. This is particularly true for tropical and subtropical dry forests, where a variety of disturbances, both natural and anthropogenic, affect forest canopies. Addressing forest degradation thus requires a spatially-explicit understanding of the causes of disturbances. Here, we apply an approach for attributing agents of forest disturbance across large areas of tropical dry forests, based on the Landsat image time series. Focusing on the 489,000 km2 Argentine Dry Chaco, we derived metrics on the spectral characteristics and shape of disturbance patches. We then used these metrics in a random forests classification framework to estimate the area of logging, fire, partial clearing, riparian changes and drought. Our results highlight that partial clearing was the most widespread type of forest disturbance from 1990–to 2017, extending over 5520 km2 (±407 km2), followed by fire (4562 ± 388 km2) and logging (3891 ± 341 km2). Our analyses also reveal marked trends over time, with partial clearing generally becoming more prevalent, whereas fires declined. Comparing the spatial patterns of different disturbance types against accessibility indicators showed that fire and logging prevalence was higher closer to fields, while smallholder homesteads were associated with less burning. Roads were, surprisingly, not associated with clear trends in disturbance prevalence. To our knowledge, this is the first attribution of disturbance agents in tropical dry forests based on satellite-based indicators. While our study reveals remaining uncertainties in this attribution process, our framework has considerable potential for monitoring tropical dry forest disturbances at scale. Tropical dry forests in South America, Africa and Southeast Asia are some of the fastest disappearing ecosystems on the planet, and more robust monitoring of forest degradation in these regions is urgently needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.