Abstract
Recently, Large Language Model based Autonomous System (LLMAS) has gained great popularity for its potential to simulate complicated behaviors of human societies. One of its main challenges is to present and analyze the dynamic events evolution of LLMAS. In this work, we present a visualization approach to explore the detailed statuses and agents' behavior within LLMAS. Our approach outlines a general pipeline that organizes raw execution events from LLMAS into a structured behavior model. We leverage a behavior summarization algorithm to create a hierarchical summary of these behaviors, arranged according to their sequence over time. Additionally, we design a cause trace method to mine the causal relationship between agent behaviors. We then develop AgentLens, a visual analysis system that leverages a hierarchical temporal visualization for illustrating the evolution of LLMAS, and supports users to interactively investigate details and causes of agents' behaviors. Two usage scenarios and a user study demonstrate the effectiveness and usability of our AgentLens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.