Abstract

Agent-based modelling has the potential to provide insight into complex energy transition dynamics. Despite a recent emphasis of research on agent-based modelling and on energy transitions, an overview of how the methodology may be of value to understanding transition processes is still missing from the literature. This systematic review evaluates the potential of agent-based modelling to understanding energy transitions from a social-scientific perspective, based on a set of 62 articles. Six topic areas were identified, addressing different components of the energy system: Electricity Market, Consumption Dynamics/ Consumer Behaviour, Policy and Planning, New Technologies/ Innovation, Energy System, Transitions. Distribution of articles across topic areas was indicative of a continuing interest in electricity market related enquiries, and an increasing number of studies in the realm of policy and planning. Based on the relevance of energy transition specific complexities to the choice of ABM as a methodology, four complexity categories (1–4) were identified. Indicating the degree of association between the complexity of energy transitions and ABM’s ability to address these, the categorisation revealed that 35 of the 62 studies directly linked the choice of ABM to energy transition complexities (complexity category 1) or were set in the context of energy transitions (complexity category 2). The review further showed that the greatest potential contribution of ABM to energy transition studies lies in its practical application to decision-making in policy and planning. More interdisciplinary collaboration in model development is recommended to address the discrepancy between the relevance of social factors to modelling energy transitions and the ability of the social sciences to make effective use of ABM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.