Abstract

For responsiveness and agility, disruptive events must be managed locally to avoid propagating the effects along the value chain. In this work, a novel approach based on emergent distributed scheduling is proposed to overcome the traditional separation between task scheduling and execution control. An interaction mechanism designed around the concept of order and resource agents acting as autonomic managers is described. The proposed Manufacturing Execution System (MES) for simultaneous distributed (re)scheduling and local execution control is able to reject disturbances and successfully handle unforeseen events by autonomic agents implementing the monitor-analyze-plan-execution loop while achieving their corresponding goals. For detailed design of the autonomic MES and verification of its emergent behaviors, a goal-oriented methodology for designing interactions is proposed. Encouraging results obtained for different operating scenarios using a generative simulation model of the interaction mechanism implemented in Netlogo are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.